

ABOUT THE ROLE OF CONTROL INFORMATION IN NATURAL LANGUAGE
QUESTION ANSWERING SYSTEMS

Michael! Hess
Seminar of General Linguistics
University of Zurich
Switzerland

ABSTRACT

- Most existing Natural Language Question Answering systems written in a Logic
Programming language such as Prolog make use of only one component of the
information expressed in the qguestions, viz. the logic component. However,
{many) Natural Language sentences also convey control information. If this
type of information is ignored the interpreter must use an input-independent,
in most cases fixed, control regime and can not always generate useful
replies. We should like to draw attention to a few such cases in the context
of Logic Programming: word oppositions like those between "what" and
"which" determining whether a generalised solution or a fully evaluated solu-
tion is required; topic and comment in gqueries and DB entries and their use
in guiding the search; restrictive and non-restrictive relative clauses and
their use in interleaving data acquisition and guery evaluation modes. We give
a very short outline of a suitable guery evaluator. The problem of actuslly
parsing gquestions is not dealt with here.

ACKNOWLEDGEMENT
This work was supported under Grant No. 81.703.0.79 of the Swiss Naticnal
Science Foundation.

To be published in: Dahl,V. and Saint-Dizier,P.,eds., Natural Language
Understanding and Logic Programming, North-Holland, 1985

Most Natural Language Question Answering systems written in the context of -
Logic Programming translate queries into a logical form, often cast in terms of
. straightforward Prolog terms, which are then evaluated direct by the system
interpreter over a Data Base consisting of equally straightforward Prolog
facts and rules.! It is very much in the spirit of Logic Programming fo pay
attention exclusively to the logical content of a query and to ignore guestions
of evaluation strategy, i.e. of control, at least in the first stage of designing
a system. Moreover, the small and straightforward Data Bases used in those
systems are kept very simple as they serve only as example material for the
systems to work with. Under these conditions gquestions of control are fairly
immaterial anyway and can be ignored even more safely. The success of
many of these systems is ample proof that the concentration on the logical
content of NL gueries was good research strategy.

But NL as such is not pure logic; in the words of Kowalski:? "Natural
Language = Logic + Control®. Translating NL queries into a logical form very
often means ignoring potentially valuable control information.® Sometimes this
will only mean that the general-purpose evaluation procedure will be less effi-
cient than one which makes use of the specific control information provided by
the user. However, it often means that we will not get, in principle, the type
of answer from a QA system which we intuitively expect. We will use examples
from both categories but we will put more emphasis on the second, more seri-
ous, case. This will also be the topic of section 1.

1. FULL EVALUATION V3. GENERALISED SOLUTIONS
1.1 WHICH VS. WHAT

The two guestions

y
1} Which managers at IBM earn $ 1060000 ?
2} What managers at IBM earn $ 100000 7

seem to call for two different types of answers,* namely

i1a} Hart, Miller, and Jones.
2a) Managers in charge of a branch office.

in the first example the whole Data Base must be searched for entries of
explicitly known managers, their salaries must be checked, and the names of
a1l the managers meeting the criterion must be listed. The salary of a mana-
ger may be known explicitly, i.e. in the case of a Prolog DB be given as &
fact (as in the case of Hart and Miller in Fig.1l), or it may have to be

foy

This is the approach chosen, for example, in Pereira and Warren's system
Chat-80, arguably the most powerful QA system written in Prolog so far
(Pereira 1883).

= Kowalski 1975:129

({4

as emphasised by Klahr 1880:113 and vNilsson 1980:183-195

as with most other problems of NL understanding we find a first solution of
this problem in Winograd's SHRDLU (Winograd1972:164).

- 9 -

computed via a general inference rule (as in the case of Jones). Imn the
second example it is this general rule itself which is the more appropriate
reply rather than the list of individual instances.

Obvicusly we don't want a QA system to reply in full "All managers at IBM
in charge of a branch office earn $ 100000"; it should return only those parts
of the rule which were not given in the query. But this is the result of fil-
tering out information secondarily, on the basis of dialogue considerations. It
doesn't change the fact that the rule had to be accessed as a whole, as a
fact, rather than executed, as in example 1. This kind of reply is sometimes
called a "generalised solution" (Kowalski 1875:184). The control decision
whether a rule should be executed, or treated as a mere fact to be returned,
is made by the user through the choice of the question word, i.e. "which"
vs. "what'. . It is a decision no interpreter, however intelligent it may be,
can make on its own.?®

manager (ibm,hart}.
manager (ibm,miller).
manager{ibm, jones).

runs (branch_office, hart).
runs (branch_office,miller).

runs(branch_office, jones).

salary (hart, 100000) .
salary (miller, 1060000} .

salary (X, 100000) :- manager{ibm,X),
‘ runs (branch_office, X).

Figure 1: A sample Data Base

D rmars sovoncmy A-AGES SHAERSPR SR NSRS AR ALS MKV PSR S MMV (ATt S SRl ST et et crvnsrss sund

We can paraphrase 1 and 2 as 1b and 2Zb which intuitively have exactly the
same meaning although they may be slightly less acceptable:

1b)} Which are the managers at IBM that earn $ 100000 ?
2b) What are the managers at IBM that esarn $ 100000 ?

Now we can see that we ask in both cases {of both versions of the two
guestions) for the set of all objects with certain properties, as expressed by
the plural definite article.® However, we expect a different type of descript-
ion for the set: In the first case ("which") we want an enumerative,

which is basically what the variable-depth NL understanding system outlined
in Kayser 1981 tries to do in a similar situation.

We are not saying that the meaning of a plural definite article can be cap-
tured completely by & Prolog setof-predicate but it's a good approximation
commonly used.

extensional description, in the second case ("what") a comstructive, intensional-
one.

To further support our claim that "which" and "what" are two control ver-
sions of the same logical expression we look at two cases where only one of
them can be used without difficulty.

In 3 and 3z we ask for a unigue cbject, as expressed by the singular
definite article, and reinforced by the superlative. 3 is quite normal as this
constraint is compatible with the contrcl information expressed by the interro-
gative pronoun, viz. with the demand that the result be an exhaustive enu-
meration of instances: It will simply be a list with exactly one member.
Contrary to that 3a sounds odd because the interrogative pronoun asks for a
general rule whereas article and superlative ask for a unique instance, and it
is just a bit pointless to have a general rule generate a unigue object. If we
force ourselves to give 3a an interpretation r we might come up with a
description of the country which is general in character but at least consists
of a sufficient number of constraints to make unigue identification likely: "It
is a constitutionsl monarchy, an island, and a reluctant member of the Euro-
pean Community"”.

3) Which is the European country with the longest coastline ?
3a) ? What is the European country with the longest coastline ?

The different control component in guestion words such as "which" and
“"what" also explains why 4 is perfectly normal

4} What is a country 7

where the reply is a general rule ("something is a country if it is a political,
national, and geographic unit"), while 4a

4a) ? Which is a country ?

is guite odd and reqguires, in order to become acceptable, a reference to ah
exhaustively listed set from which the answer can be picked:

4b) Which (one, of the following, ...} is a country:
Lichtenberg, Liechtenstein, or Lichtenau ?

When referring to pecple we can, in addition to the distiction betwsen
indefinite reference and definite reference, as expressed by "which" and
"what", use the further category of "individual reference", through the use
of "who". Now we ask for an individual, known by name if possible:
5} What's her husband? He is a film director.
5a} Which is her husband? He is the man smoking a pipe in the cormer.
5b) Who is her husband? He is Paul Jones.

Note that 5 is precisely the kind of guestion mentioned as a bit pointless
above. But 5 is an (almost idiomatic) special case: One's profession is, in our
culture, considered the most important general criterion for social categoriza-
tion, and "What's her X" asks specifically for X's profession. This becomes
clear when we consider 5d

5d) 7 What's her teacher?

which is definitely odd, and precisely because the {only conceivable type of)
answer is given in the question itself.

One problem in this context has not been mentioned yet: What is a QA
system supposed to do if we ask an indefinite question ("what") but there is
no general rule in the DB, only individual instances? The easiest solution is
to make the system ireat an indefinite guestion as a definite guestion in 2
situation like that; i we removed the rule about salaries from the DB of Fig.
1 this would indeed be the only sensible behaviour. With a richer DB a more
ambitious solution is conceilvable: As before, the list of individusl instances
could be computed, but then the system could try to form eguivalence classes
from the list of instances, or even synthesize a rule which could generate
this list.

Finally it is, of course, concelvable that the system finds several rules
when looking for an answer to an indefinite guestion. Then it is reasonable to
list them sll as reply.

1.2 EVERY VS. ALL VS. EACH

Basically the same distinction of full evaluation vs. generalised solutions holds
 between "every" and "all" although the difference between them seems to be
felt less clearly than in the case of "which" and "what".7 "Each" finally seems
to be a third control version of the same underlying universal guantifier.

8) Does every manager of an IBM branch
office earn $ 100000 ?

84) Do all managers of an IBM branch
office earn $ 100000 7

6b) Does each manager of an IBM branch
office sarn $ 100000 ?

When asking guestion 6 we would expect a QA system to check every single
instance of an entry about IBM managers, and then check the entry for his
or her salary, irrespective of whether there is a universal rule about manage-
rial salaries In the DB or not. The system should not fail if, for some mansa-
gers, there is mo entry at all about their salaries, provided there is a gene-
ral rule it can execute; the system should then rep};y something like "nothing
is known about Jones, but in general yes"

When asking question 6a we would be satisfied if the system found & gene-
ral rule. A general rule says, of course, nothing about the existence of its
antecedents (it does not say, in Fig. 1, that there are managers at IBM in
the first place). However, this is clearly presupposed by the gquestion, and
the user therefore does not reqguire the system to check the individual cases.

7 However, the terminology frequently used to describe these words shows
that there is a definite difference in their meaning: Leech/Svartvik 1979:50
call "each” and "every" (as opposed to "all") "distributive", Saint Dizier
1884:43 "universal distributive guantifiers" (as opposed to simple "universal
guantifiers"). Jespersen 1874:599 describes "every" as "all, taken separa-
tely®.

Only if no general rule can be found the systein must test the individual
cases and answer, if appropriate, "as it happens yes, but not necessarily

so®,

 Questions with "each", such as 6b, seem to require an exact "matching"
between the domain of the gquantifier on the on hand, and the objects or
events referred to in the restrictions on the other hand. If such s matching
isn't obvious a sentence becomes odd, as the comparison between examples 7
and 7a shows; in our culture you have husbands one at a time, which makes
it clear that there are separate events of admiration which can be matched
with the husbands one to one. In 7a, however, the uncles aren't pre-ar-
ranged in any discernible order, and so it isn't clear how the admiration is to
be distributed among them. In order to make 7a unproblematical we must add
information which explicitly creates different types of admiration, one for each
uncle, as in 7b:8

7} Marge admired each of her husbands.
7a) ? Marge admired each of her uncles.
7b) Marge admired each of her uncles in a different way.

We can model these differences rather closely in terms of control informa-
tion: A QA system, trying to find an answer to an "each"-question, should
look only for base facts in the DB to be "matched" against each other (in our
example: facts about managers and facts about salaries} but it should not use
any inference rules to compute either domain or restriction terms (e.g. to
infer that Jones must also earn $ 100000).

1.3 ANY VS. SOME

"Any" and "some" can alsc be seen as the two control versions of one and the
same logical expression, viz. of the existential guantifier.® The conventional
explanation is that the meaning of "some” and "any" is the same but that
"some” is used in assertive positions and "any" in non-assertive positions
(i.e. in guestions, negations, conditionals, comparisens). However, "any"
can be used in assertive positions ("Any colour will do"),'° and "some" can
be used in non-assertive positions, although in both cases this atypical use
results in a particular connotation of the resulting sentence: In the case of
the non-assertive "some" this connotation consists in a clear positive bias,

8 McCawley 1981:98

That "any" isn't a straightforward existential guantifier is shown by the
following example where the intonation alone can turn it either into a uni-
versal or into an existential quantifier: "I don't lend my books to any-
body." With a rise-fall-rise tone on the "any" the sentence means "I don't
lend my books to just anybody", with a high-falling tone "I don't lend my

books to anybody at all'. (Jespersen 1974:606)

10 This is a simplification: They are not ordinary assertive positions. They
always have some kind of "generalised", even "modal", connotation: “any
colour will do", "you can take any colour”, "you may come any day, but

you must come some day" (Jepsersen 1874:604).

..6

whereas "any", used in the same position, is neutral: 8 clearly is neutral,
whereas in 8a the speaker knows for sure that there are femsale managers at
IBM that make $ 100000, and the guestion is only whether the addressee
knows them.

8)‘ Do you know any female managers at IBM that earn $ 1000007
8a) Do you know some female managers at IBM that earn $ 1000007

In 8a those female managers at IBM are treated as a group, and the
asddressee is expected to know them as a group: the famous four female top-
managers at IBM, mentioned in all the newspapers, etc. He is not expected to
know any individual instances. In 8, on the other hand, it is precisely indi-
vidual instances he is asked sbout.

One more example to highlight the difference:

9) Did you get any post cards last week?

9a) Did vou get some post cards last week?

We could essily imagine a continuation of 8a "...
Italy", which doesn't sound right for 9.1!

which 1 sent you from

The situation with "some" and "any" is an almost exact parallel to the rela-
tionship between "all" and "every". In both cases the first word, when used
in a guery, looks for a whole group, or set of objects, known (and assumed
by the speaker to be represented in the receiver's mind) as one single
complex eniry, whereas the second word looks for multiple simple entries for
multiple simple facts. And in both cases we have to use the same strategy if
we can't find such a complex entry: we must then look for simple entries
scattered in ocur mental DB, i.e. we have to treat all-questions and some-
guestions as every-guestions and any-questions, respectively. And if, in
this situation, the answer is in the affirmative it will usually be preceded by
a phrase such as "as it happens” to indicate that the receiver couldn't simply
"Mook up" the answer but had to compute it from scattered bits of informa-
tion.

7. ERROR HANDLING: VIOLATIONS OF EXISTENTIAL PRESUPPOSITIONS

1t is well known that missing axioms are a source of trouble in Logic Pro-
gramming and in common sense reasoning likewise. In some cases the absence
of a piece of information may be a perfectly legitimate state of affairs (of
which we make good use when we Interpret negation as non-provability), but
in other cases it is an "error"” in ocur DB, i.e. we don't know something we
ought to know.

11 The same distinction is made, incidentally, between "already" and "yet":

10) Has she gone to bed yet?
10a) Has she gone i{o bed already?

-

Particularly counter-intuitive is the situation where we try to prove & uni-
versally guantified statement using double negation, i.e. for 11 we have to
prove llsz: '

11) Does every manager drive a Cadillac?
11a) not{manager(X), not{drives(X, cadillac)}}.

If there are no éntriex about managers in cur DB the proof will succead sat
once, but really "for the wrong reason”.

In some implementations of Prolog we can tell the interpreter how to react
when an axiom is found missing during a particular sub-proof: to either
simply fail the sub-proof, to abort the whole proof with an error message, to
fail but also issue an error message, etc.

Common sense, interpreting NL statements, shows a similar behaviour; we
don't treat wviolations of existential presuppositions the same way we treat
negations (given explicitly or as faillure). English has special expressions for
that: "There are nc managers at IBM to begin with" or "in the first place”, as
opposed to "no, they don't".

Any useful QA system must mseke this distinction (as indeed most do).'2 If
a system, during the evaluation of an every- or each-guestion, cannot find
an entry for any one of the domain terms it should fail and report the viola-
tion of an existential presupposition instead of merely failing the proof. A
missing restriction term should, of course, make the subproof simply fail. As
an all-question asks for an explicit all-rule the system doesn't first have to
care whether individual instances are also listed in the DB. However, if it
cannot find any all-rule, and if it must resort to a search of the DB for indi-
vidual instances, it must salso report violations of presuppositions {(l.e. it
must treat the "all"-guery exactly the same way as an "every"-query).
y
Ansalogous is the situation with "what"- and "which"-guestions, and with
"some"~ and "any"-guestions.

3. ORDER OF EVALUATION: TOPIC AND COMMENT

There is yet another way of conveying control information in guestions but it
is almost too obvious to be noticeable: it is the distinetion between topic and
comment?!® by means of word order. Questions 12 and 12a

12} Do any American female managers earn $ 100000 7
12a) Do any female American managers earn $ 1000600 7

are, of course, logically eguivalent, as are all the possible commutations of
their translations into Horn-clause 12b

12b) 7- manager(X), female(X), american{X), salary(X,Y), 100000<Y.

12 Berry-Rogghe 1980:192-195, Berry-Rogghe 1979:293, Bronnenberg
1980:253. Cf. also Kaplan 1879.

'3 Both Rerry-Rogghe 1980:165 and McKeown 1883 desl with the role of topic
and comment in QA systems.

The order of words codes the order of evaluation which is considered most.
efficient by the spesker. However, the two orderings do not necessarily
have the same direction: In English the order of adjectives and nouns in a NP
is exactly the inverse of the most efficient order of evaluation, whereas post-
modifiers already have the right ordering, as shown in 13 and 13a

13) Do any female American managers in their thirties with children
above the age of four ...

13a) manager{X), american({X), female(¥}, age(X,630+},
child(X,Y), age(Y,4+},

If we represent the topic-comment distinction of asserticns in an equally
straightforward menner, viz. as the ordering of entries in the DB, the stan-
dard interpreter of Prolog will automatically use the most efficient strategy to
evsluate the terms of a guery, provided they are themselves arranged accor-
ding to topic and comment.

A general guery optimisation program could itry to rearrange the terms of
i2 on its own in such & way as to minimise the size of the search space,
using estimates about the cardinality of the sets of entries in the Data
Basge.!* However, even this rather scophisticated approach does not make use
of the control information supplied by the user in the guestion, and this can
be crucial if there are very general terms, such as "small" or "yellow", in a
guestion - it will be next to impossible tc give a reasonable estimate of the

cardinality of the set of entries about yellow things in & DB.

4. QUERY MODE V8. ASSERTION MODE: RESTRICTIVE VS. NON-
RESTRICTIVE PHRASES

‘

ot

One more way to express control information in NL should be mentioned. QA
systems don't normally deal with declarative sentences at all. If they do the
system has, as a rule, two completely separate modes of operation: one for
gquery answering, and one for data acquisition. However, in some cases NL
mixes these two modes freely, for instance when using relative clauses:

14} Do managers who earn a lot pay a lot of taxes?
14b) Do managers, who earn a lot, pay a lot of faxes?

While 14 is simply a guery where the restrictive relative clause adds one more
restriction, in 14b the uon-restrictive relative clause functions as an
embedded declarative sentence in & gusstion. The speaker wants to make
sure that the receiver knows ceriain relevant facts before he/she/it sets out
to answer the guestion. While processing the query the receiver has to go
from answering mode into data ascgulsition mode for a short while.

Quite complex combinations of processing mode information and mixed eva-
luation depth informsation are possible (although some of the examples sound
awkward):

15) What managers, some of whom pay taxes, are well-paid?
16) Which employees, whose bosses zll earn a lot, are underpaid?

14 Yarren 1981

17) Is a manager every employee of whom is underpaid unpopular?
or much better:
17a) Is a manager unpopular if every employee of his is underpaid?

Not only relative clauses can be restrictive or non-restrictive: appositions
{18, 18a) and postmodifiers {(18b,18¢c) can be used to make the same distineci-
tion:

18) My friend Peter was here last night.

18a) My friend, Peter, was here last night.

18b) The substance discovered by accident which had the greatest impact
on medicine is penicillin. '

18¢) The substance, discovered by accident, had an enormous impact on
medicine. ‘

5. REPRESENTATION OF THE DATA AND OUTLINE OF AN INTERPRETER

If we want to have an input-dependent, flexible control regime which allows a
system ‘to access base facts one time, general rules another time, to issue dif-
ferent error messages in ecase axioms cannot be found during a proof, and to
go from query mode to data acqguisition mode and back again, we have to
change the standard way of representing data, and we also have to modify
the interpreter. In order to keep changes to the absclute minimum we simply
sketch a small interpreter on top of the system interpreter.

The first requirement is that the interpreter should be able to access infe-
rence rules as facts. Thus rule 19 becomes 18a!°®

19) salary(X,lOOOOO) :- manager{ibm, X}, in_charge_ of (X, branch_office).

19a) all{X, [manager(ibm,X), in_charge of (X, branch_office}} ,
salary (X, 160000}).

As long as these all-expressions are nothing but Horn-clauses turned into
Prolog facts, they should not have more than one term in the third argument
position, and a conjunction of goals has to be written as follows

all(X, [manager(X,ibm)] , salary(X,100000);.

all(¥X, [manager(X,ibm}] , drives(X, cadillac)).

We can, of course, still use explicit inference rules as long as we do not
require them to be available as generalised solutions. This may be the rigth
thing to do for information about the type hierarchy, such as 20

20} animal(X) :- deog(X).

15 This representation is now widely used for quantified formulas; it makes
the restriction on the variable, its range, explicit in the second argument,
as opposed to the classical quantifiers. Cf. Moore 1981:9, and Pereira
1983:21.

10.

20 is, to us humans, "obvious" in the same way as the grammar rules of our
native tongue: In order to retrieve such a rule we must generate an example,
and then abstract, from the proof tree of the specific example, what the
underlying general rule must look like.

We already stressed the close parallel between sli-statements and some-sta-
tements as far as their content of control information is concerned: Both have
a positive bias, i.e. they presuppose the existence of whole contiguous
"ehunks™ of data, of structured objects,®® and both will look for individual
DB entries corresponding to individual terms in a structured object only in
case such a structured object cannot be found. Accordingly we turn the
Horn-clauses

kangaroo(skl)}.
in{skl,africa).
siriped{skl}.

for "some kangaroos in Africa are striped” into
21) some{skl, [kangaroo(skl), in(skl,africa)], striped(skl)).

The second argument carries the topical information, the third argument is
used for the comment.

Information about individuals is represented the usual way:
manager{jim}.
american{jim) .
drives_a_cadillac{jim}.
An interpreter would accordingly have to prove an all- or some-guery by

first looking for a matching all- or some-entry in the DB and second, if that
fails, evaluate the expression:

demo{Goal, Answer) :- candidate{Goal, Candidate), match{Goal, Candidate},
difference{Goal, Candidate Answer).

demo{Goal, Answer} :- evaluate{Goal, Answer).

candidate{all{X Y, 6 Z)},all{T,V, Z}) - all{u,v,Z).

candidate(some(X,Y,Z),some{W,V,Z}} i~ some{U V, 6 Z}.

evaluate{all(X, Y, Z),as_it_happens _vyes) :- not{presup{Y),not{demo(Z,_}))}).

evaluate{some{X,Y,Z), as_it happens_ves} :- presup{Y¥Y), demo{(Z,_}.

presup(G) is the same as demo(G,_) only it will report missing axioms as pre-
supposition viclations.

Matching all-expressions with each other is interesting. If we want to
prove 22, given in Predicate Calculus notation,

22y ALL X{kangaroo{(X) AND in{X, australia) AND female(X}) » brown(X).

16 Nilsson 1980:361-415 uses the term for the representation of data in the
form of semantic networks, but then semantic networks are only a conve-
nient way to visualise logic anyway.

- 11 -

it becomes, in the notation used here,
22a) 7- all(skl, [kangaroo(skl}, ih(skly austmiia} ,female(skl}], brown(skl}}.

{note that the matcher expects unix}ersa}ly guantified wvariables in a guery to
be skolemized). This term will have to match (e.g.) with the DB entry

23) ali{¥, [kangaroo(X), in{X, australia)]},brown(X)}).

i.e the comments of the two terms ("brown(X)" and "brown(sk1)") have to be
a direct match but it is sufficient that the set of range constraints of the DB
entry be a unifiable subset of the constraints of the gquery. (By "unifiable
subset" we understand a set which contains only members which are unifiable
(not necessarily identical) with some members of a second set, i.e. the kind
of subset we get automatically if we wuse the regular Prolog definition of
"member”.) We would, obviously, have to make sure that properties are inhe-
rited the usual way through the hierarchy of types, but this problem is of no
interest in the present context.

Msatching all-expressions through the computation of the subset relation
between their topics can be seen as the simulation on the meta-level of a
direct object-level proof. If we want to prove 22, we have to negate it and
to transform it into clausal form, which will give 22b

22b) kangaroo{sk?2), in(sk2,australia), female(sk2), :- brown{(skZ}.
' 22b can be used as a direct proof for the existence of an inference rule 22c
22¢) brown{X} :- kangarco(X), in(X, australia), female(X}).

provided we interpret the unnegated terms in 22b as temporary additions to
tHe DB, to be removed after the execution of the proof, and the negated
expression {(":-brown(sk2)"), of course, as goal to be proved. Given the
unigueness of the Skolem constant this proof can only succeed if rule 22¢ is
in the DB. Additional unnegated terms in the guery are harmless: They are
additions to the DB which are never accessed. This is what the subset-opera-
tion of the matcher modelled on the meta-level.

If we want to match a some-gquery against a some-entry, everything is
inverted. Obvicusly we will have the unbound wvariables in the guery and the
Skolem constants in the DB entry, and the set of range constraints of the DB
entry has now to be a unifiable superset of those of the guery. The guery
24 must match the DB entry 25

24) 7- some{X, [manager(X),american({X)], drives(X, cadiallac)}.
25) some(sk3, [manager(sk3)},american(sk3), female(sk3)],
drives{sk3, cadillac}}.

In a direct proof, reordering DB entries and query terms is a simple way to
improve efficiency, as mentioned above in the remarks on topic and comment.
The ordering of the terms in the range constraints of both all- and some-
expressions was made to preserve the ordering of the original query terms
and DB entries. Thus we retain this gain in efficiency for direct proofs in
their meta-level simulation: The computation of sub- and supersets proceeds
from left to right, simulating the most efficient sequence for the direct proof
seguence.

12

The distinction between every- and each-questions can be made as follows:.

demo(every(X,¥Y,Z),ves) :- not{presup(Y), not{demo(Z, }))), !.
demo(each(X,Y, 2}, yes) :- not{candidate(¥,U), match(Y,U),
: not{candidate(Z,V), match(Z,V}))), !.

What-queries ask for {all) the rules (all-statements) matched by the
query; the reply is the set of matched rules. If no rules can be found the
query is treated as a which-query. A which-query evaluates to the set of
instances found.

demo({what{X,Y,Z), Answer) :- (setof(B, {candidate(all{X,Y,Z),C),
: match(all{X,Y,2},C),
difference{C,Y,B)), Answer) ;
demo(which(X,Y,Z), Answer)).
demo(which(X,Y,Z), Answer) :- setof(Y, (presup(Y), demo(Z,_ }}, Answer).

For data-acquisition mode we can, of course, use the system predicate
"assert”. We will have to make sure that existentially quantified variables are
first skolemized. 14b ("Do managers, who earn a lot, pay a lot of taxes?™")
should accordingly translate into

11b) assert{all{X, [manager(X)] ,earns a lot{X}}),
demo(all(sk4, [manager(skd)], pays_lotsa taxes(sk4)), Answer}.

whereas 15 and 16, repeated here for convenience, should translate into 15b
and 16a, respectively:

15) What managers, some of whom pay taxes, are well-paid?

16) Which employees, whose bosses all earn a lot, are underpaid?

15b) assert{some(sk5, [manager{sk5)],pay_taxes(sk3d}},
demo{what{X, [manager{X)], well paid(X)), Answer).

16a) assert(all{(X, [manager{X),employee{(X,Y)], earns_a lot(X})}),
demo{which{X, [employee{(W,U)], underpaid{U}), Answer).

Examples of declaratives embedded in other declaratives are simpler:
26) Some car dealers, who are greedy, are crooks.

as copposed to

27) Some car dealers who are greedy are crocks.

and

28) Car dealers, some of whom are crooks, are greedy.

as opposed to

29) Every car dealer who is greedy is a crook.

ought to translate into one or several "assert”-commands:

26a) assert{some{sks, [car_dealer(ské)] ,crook(ské6})),
assert(all{¥Y, [car_dealer(Y)}] ,greedy(Y))).

Note that the default interpretation of a plural as a universal gquantifier is
used for the relative clause: all car dealers are said to be greedy or else it

would be said otherwise with an explicit quantifier, as in 28

27a) assert(some(sk?, [car_dealer{sk7), greedy(sk7)] , crock(sk7)}}.

13

28a) assert(all(X), [car_dealer(X}] , greedv(X))),
assert(some(sk8), [car_dealer(sk8)] , crook(sk8))).
29a) not(demo(car_dealer(X),_), demo(greedy(X),_) not{assert{crook(X}})).

29a is interesting in that it will add for each car- dealer found to be greedy,
a separa’te elementary fact "crooL(X)"

crook{jim}.
crook{peter).
crook{bill}
ete,

There will, however, be no explicit "every"-entry, true to the definition of
"every".

Almost as 'a side-effect the data representation and the interpreter outlined
here can cope with certain sentences which otherwise cause problems:
Example 30 would be translated into Predicate Calculus as 30a

30) Managers whose empléyees are underpaid are unpopular.
30a) ALL X(manager{(X)} AND ALL Y(employee(X,Y) = underpaid(Y))
» unpopular(X))

It translates, because of the implication in the antecedent, into the non-
Horn-clauses

- 30b) unpopular(X) :- manager{X), underpaid{ski(X)).
unpopular(X), emplovee(X,ski(X)}) :- manager(X).

The second clause, with a disjunction in its head, cannot be processed by the
Prolog interpreter. Also, the clausal form is highly un-intuitive. If we repre-
sént it by means of uninterpreted embedded all-statements we can use it
direct as a DB entry

30¢) all(¥, [manager(X), all(Y, [employee(X,Y)}] , underpaid(Y))]
unpopular{X)}).

which is also very close to the form of the original NL statement. If our
guery is

"demo{ unpopular(jim), A)"

the interpreter will access 30c) by means of the top "demo"-rule of the
interpreter, and then work its way down through the embedded terms trying
to find generalised solutions wherever possible, otherwise evaluating the
terms. If it has to fully evaluate every subterm of 30c) this DB entry is
interpreted the same way as the usual ‘translation of 30) into
Horn-clauses-cum-negation-as-failure

30d) unpopular(X) :- manager(X), not{employee(X, Y}, not{underpaid(Y)})}).

would have done it.

If we want to prove the general rule that managers whose employees are
underpaid are unpopular, we must turn 30) into the query 30e

14

36e) demo{all{sks, [manager{sks},
all{sk7, [employee(sks,sk7)], underpaid(sk7})], .
unpopular{sk6}},A).

If the DB is as follows

manager{jim}.
unpopudar(jim) .
all(X, [employee(jim, X}] , underpaid{X}}.

but 30c itself is not in the DB, we will get the reply "yes, as it happens",
by partial evaluation of the subterms of the query. Finally, if the DB con-
tains only base facts such as

manager{jim).
employee(iim, joan).
underpaid (joan) .

we will have to compute the answer as if the guery had been given in the
standard, fully reduced, form, i.e.

30f) ?7- not{manager{(X), noit{employee{X Y},
not{underpaid{¥Y)}),not{unpopular{X}}J.

Different is the case of guestion 31
31} Is a manager unpopular if every employee of his is underpaid?

which must be translated into 30f right from the beginning.

§. CONCLUSIONS

Many guestions provide a QA system with wvaluable control information which
either must be used to generate a pragmatically useful reply, as opposed to'a
merely logically correct reply, or it can be used to prevent the system from
performing a search which is very unlikely to succeed. There must be many
more types of control information conveyed by NL which might be put to good
use in a similar way: Adverbs and adverbial constructions ("what are, gene-
rally speaking, the..."), "meta-nouns” ("the number of", "average value
of"), adjectives (attributive adjectives for existential presuppositions).t’

In this approach, some work is shifted from the parser to the query eva-
luator; all the guantifier and gquestion terms mentioned, such as "every",
"all" , "which", etc. are transferred unchanged from the text to either the
DB entries or the query, and their embedding structure is also maintained
{and taken care of by the guery evaluator). Nevertheless the design of a
parser dealing with the phenomena outlined will still not be a simple affair, 18

17 ¢.Hahn 1980:183 investigates this question in some detail.

18 Porto 1984:228-232, made a beginning for a similar approach.

7. BIBLIOGRAPHY

Berry-Rogghe, G.L./Dilger,W., 1979. Konzeption eines Terminterpreters.
in: Kolvenbach 18739, 289-304. | _

Berry-Rogghe, G.L, et al.,1980. Interacting with PLIDIS a deductive
question answering system for German in: Bole 1980, 138-220.

Bole,L.,ed.,1980. Natural Language Question Answering Systems. Hanser:
1380.

Bole, L., ed., 1980a. Natwral Language Based Computer Systems. Hanser:
1980.

Bronnenberg, W.J.H., et al., 1880. The Question Answering Sysiem
PHILIGAI. in: Bole 1980, 217-305.

v.Hahn,W., et al., 1980a. The Anatomy of the Natural Language Dialogue
System HAM-RPM. in: Bole 1980z, 119-253.

ISLP 198%. International Symposium on Logic Programming, Feb 6-3 13984,
Atlantic City. IEEE Computer Society Press: 1884.

Jespersen, O., 1374. A Modern English Grammar Part VII, Syntax. Allen

- and Unwin: 1874,

Kaplan, J. 1979. Cooperative Responses from a Portable Natural Language
Data Base Query Svystem. PhD Thesis, CS Dept., U. of Pennsylvania:
1879.

Kayser, D./ Coulon, D. 1881. Variable-Depth Natural Language Under-
standing in: Proceedings IJCAI-81: 64-66

McKeown, K.R., 1984. Paraphrasing Questions using Given and New Infor-
mation. in: AJCL, vol.9, Nr.1, 1984, 1-10.

Klahr, Ph./ Travis, L./ Kellogg, Ch., 1980. A Deductive Sysfem for Naiu-
ral Language Question Answering. in: Bolc 1880: 74-136.

Kolvenbach, M./ Ldtscher, A./ Lutz, H.D., eds. Kinstliche Intelligenz und
natiurliche Sprache. Narr: 1979

Leech, G./ Svartvik, J., 1975. A Communicative Grammar of English.
Longman: 1975. .

Kowalski, R., 1975. Logic for Problem Solving. North Holland: 1875.

McCawley, 'J.D., 1981. Everything Linguisis have Always wanted {o Know
About Logic Blackwell: 1881.

Moore, R.C., 1981. Problems in Logical Form. SRI International, Technical
Note 241. '

Nilsson,N.J., 1980. Principles of Artificial Intelligence. Tioga: 1380.

Pereira, F.C.N., 1983. Logic for Natural Language Analysis. SRI Interna-
tional, Technical Note 275.

Porto, A., et al., 1984. Natural Language Semantics: A Logic Programming
Approach. in: ISLP 1984: 228-232.

Quirk, R./ Greenbaum, S./ Leech, G./ Svartvik, J. A Grammar of Contem-
porary English. Longman: 19879

Saint Dizier, P., 1984. Quantifier Hierarchy in a Semantic Representation of
Natural Language sentences. This volume.

Warren, D.H.D., 1981. Efficient Processing of Interactive Relational Data
Base Queries Expressed in Logic, in: T7th International Conference on
Very Large Data Bases, 1981.

Winograd, T. 1972. Understanding Natural Language. Edipburgh U.P.:
1972

16

