

Department of Comparative Linguistics

Moving beyond Pāņini: causal theories in linguistics

Balthasar Bickel

a VERY brief history of linguistics or: why linguistics has a problem with causal theories

Pāņini's Aṣṭādhyāyī (fl. 4th c. BCE)

3,959 rules of Sanskrit

An example:

"2.3.1 if not already expressed,

2.3.2 for goal: case 2 (ACC)

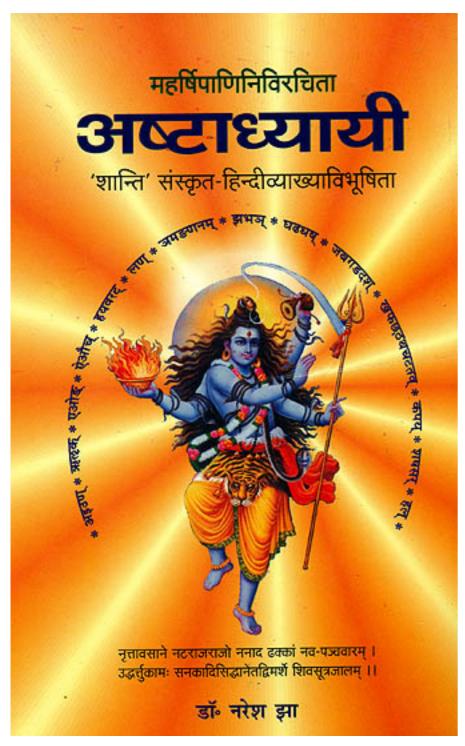
2.3.46 for gender and number only (i.e. no role specs): case 1 (NOM)

3.4.69 for agent, goal or intransitive: *laḥ* (finite verb endings)"

We get can accusative on goals *because* it's the law.

The origin of grammatical analysis

Pāņini's Aṣṭādhyāyī (fl. 4th c. BCE)

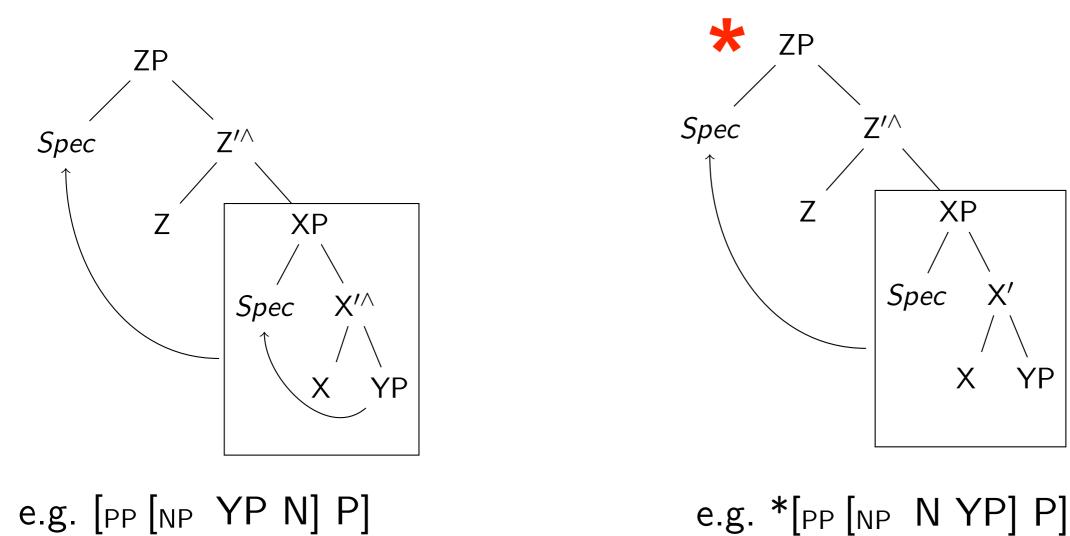


२.१.१ समर्थः पदविधिः । २.१.२ सुबामत्रिते पराङ्गवत् स्वरे। २.१.३ प्राक् कडारात् समासः । २.१.४ सह सुपा। २.१.५ अव्ययीभावः । २.१.६ अव्ययं विभक्तिसमीपसमृद्धि-व्यृद्धर्थाभावात्ययासम्प्रति-शब्दप्रादुर्भावपश्चाद्यथाऽऽनुपूर्व्ययौगपद्यसादृश्य-सम्पत्तिसाकल्यान्तवचनेषु । २.१.७ यथाऽसादये। २.१.८ यावदवधारणे। २.१.९ सुप्प्रतिना मात्राऽर्थे। २.१.१० अक्षशलाकासङ्ख्याः परिणा। २.१.११ विभाषा। २.१.१२ अपपरिबहिरश्चवः पश्चम्या। २.१.१३ आङ् मर्यादाऽभिविध्योः ।

- Formulate the most concise, most parsimonious, most elegant description, like Pāņini!
- Mostly a goal in itself: "pure linguistics" (Lazard 2012*)
- But perhaps not so interesting for other disciplines:
 - The most elegant and concise description may not capture
 - the generalizations by which children learn
 - the components that fit with the phylogeny of language
 - the units that brains process
- Still, linguists adopt the Pāņinian style even for cross-linguistic work...

Pāņinian Thinking in Comparative Linguistics, Typology

- Fomulate a law and explain away any counter-examples!
- And so the law causes the facts!
- Illustration: The Final-Over-Final-Constraint (a modern version of Greenberg Universal #2; Biberauer et al. 2014*)



Pāņinian Thinking in Comparative Linguistics, Typology

• Counterexample in Harar Oromo (Kushitic, Owens 1985)

[PP [NP	maná	[NP obbolesá	xiyyá]]	=tt]
	house	brother	my	in
	Ν	NP		Р

 Solution: Explain the example away, e.g. limit the FOFC to complements with the same category features (Biberauer et al. 2014^{*}) and argue that Oromo postpositions are [+V], or indeed not postposition at all.

Why not?

- Nothing is guaranteed to be exceptionless, not even "exceptionless (p<.05)" (Piantadosi & Gibson 2014^{*})
- No idea what survived the human population bottlenecks 20-60*kya*!
- So pick generalizations that are justified (Chomsky 1964ff), but this leaves us in the end perhaps only with very abstract generalizations like
 - simple composition ($a \& \beta$), as shared with other species (e.g. mongooses, Janssen et al. 2012⁺)
 - supra-regularity, as shared with other cognitive domains (e.g. action, Fitch 2014[†])
 - recursion, as shared with other species when limited to regular grammars (e.g. Tamarin monkeys; Fitch & Hauser 2004[‡])
 - asymmetry (categories), as shared with other species (e.g. Campbell monkeys; Ouattara et al. 2009§)

A cheap way out

- Plough through databases, find soft constraints (correlations). Then explain them post hoc...
- but this is the very problem that brings us here!
 - sample?
 - missing data
 - unclear stochastic process
 - causality?

Perhaps after nearly 2500 years, it's time to move on!

A more expensive way out: a normal science approach

- How is the (evolutionary, diachronic, ontogenetic) development of specific parts of languages *caused* by the natural and social ecology of language?
- For this, we need:
 - (1) **Theories** on how natural and social conditions causes specific patterns in language evolution, change and development so that structures end up with the distributions we observe

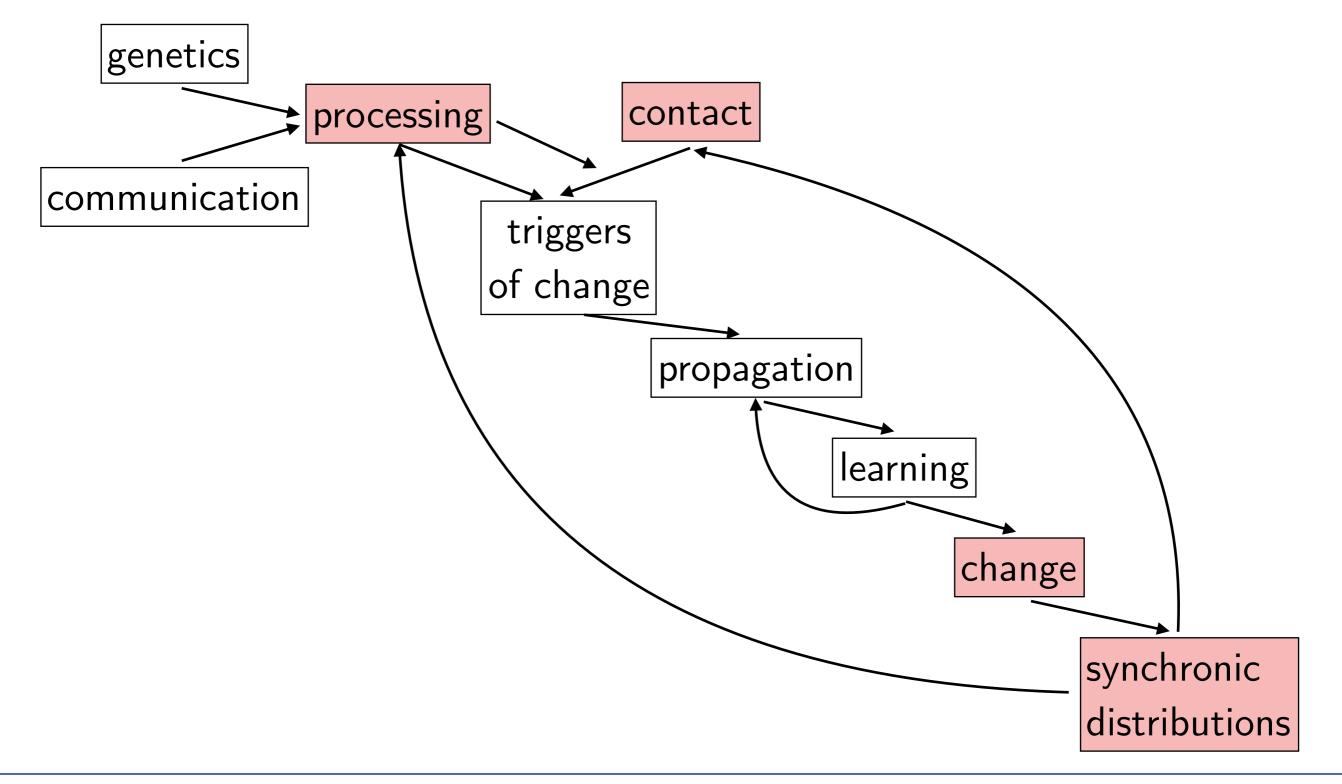
(2) Fine-grained variables for **measuring** these distributions. Adequate iff

- descriptively correct
- cross-linguistically applicable
- in sync with what we know about processing, acquisition

(3) Statistical **models** for testing (1) against (2)

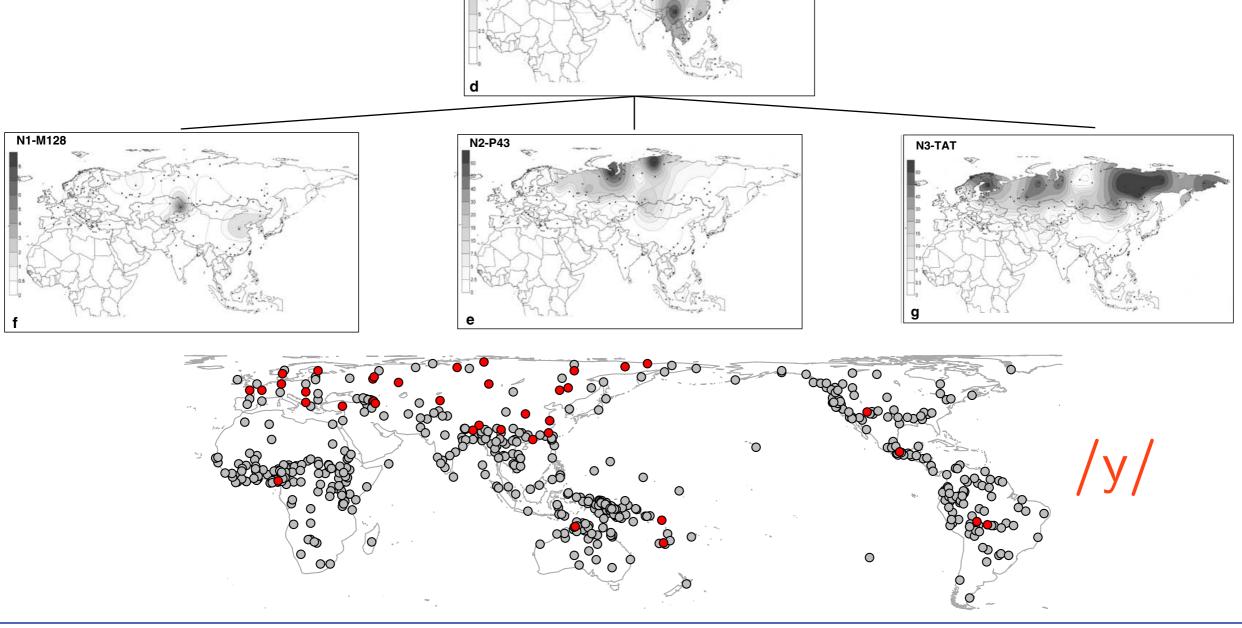
Theories

• General framework (cf. talks by Dan Dediu, Morten Christiansen, Florian Jaeger, Jasmeen Kanwal, Christian Bentz)



Causal theories — **some examples**

 Event-based theories: contact effects limited to concrete, *localized and historical* events, with no functional motivation, e.g. events in Eurasia in the least 14ky:

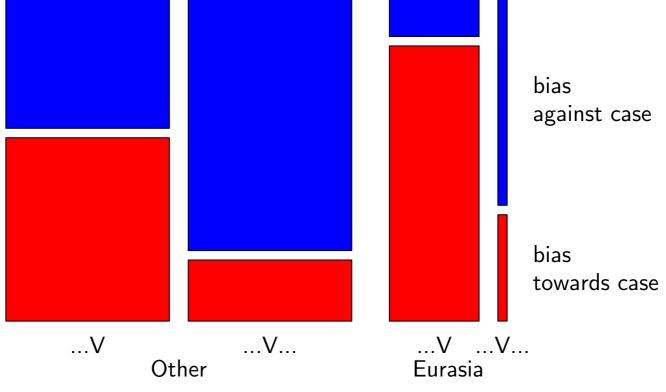


Rootsi et al. 2007 in Europ J Hum Gen, Maddieson 2005 in WALS

- Functional theories: processing and communication principles cause certain directions in language change, e.g.
 - High cost of voicing in word-final position favors development and maintenance of final devoicing (Blevins 2004^{*})
 - Low humidity disfavors development and maintenance of rich tonal distinctions (Everett et al. 2015⁺; also Coupé's talk)
 - Signal transmission in verb-final structures is safer with case makers (Hall et al. 2013[†], Gibson et al. 2013[‡])
 - Informative communication prefers certain lexical patterns (Regier's talk)
 - Priming trends cause differences in NP frequency (Bickel 2003§)
 - Perhaps: supra-regular computation favors the development and maintenance of embedded phrase structures ("Dendrophilia", Fitch 2014#)

Signals may be weak

- Causes trigger *possible* change, but actualization requires many opportunities for change (many speakers, many generations) because:
 - uncertainty of social propagation (but once there, we get amplification through feedback loop in the next generation; cf Dediu's talk)
 - competing forces: e.g. contact events can enhance or suppress a principled trigger of change



• In fact, a causal trigger must not be too strong: it might harm communication and acquisition!

Bickel 2015 Oxford Handbook of Linguistic Analysis, 2nd ed.

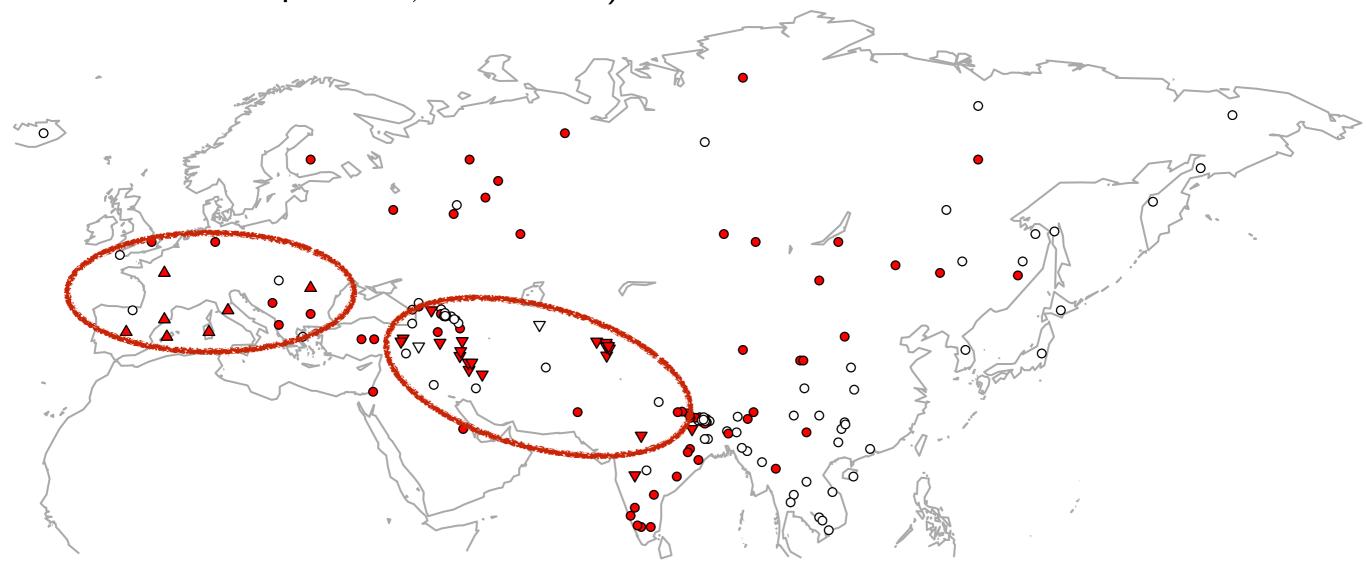
Methodological challenge

- must pick up signals of change: diachronic transition probabilities (Maslova 2000 etc.)
- even when languages don't belong to a family (44-47% of all families have only 1 known member*)

- Family relations are a confound (Galton's Problem, Simpson's Paradox), so control for them by...:
 - strategic sampling (Dryer 1989*), or re-sampling (Everett et al. 2015+)
 - modeling them as fixed (Dediu & Ladd 2007[†], Bickel et al. 2009[‡]) or random (Jaeger et al. 2011[§], Bentz & Winter 2013[#]) factors
- but...
 - even after controling for confounds,
 - synchronic frequency estimates ⇒ transition probabilities:
 - the process may not have reached stationarity (Maslova 2000[¶])
 - indeed sometimes has not reached stationarity (Cysouw 2011),
 - especially when it is driven by local contact events!

and more problems..

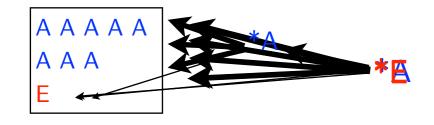
- also, shared inheritance or parallel development within a family can be the very signal we seek to pick up!
- E.g. DOM in Romance (e.g. Spanish *a*, Romanian *pe*) or Indo-Iranian (e.g. Hindi -ko, Nepali -lāi, Persian râ)



Core ideas:

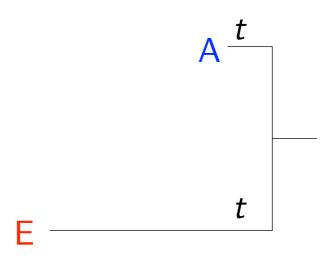
- Families are not a confound but demonstrated families are the very basis on which we can estimate transition probabilities (Greenberg 1978*, Maslova 2000⁺ etc.)
 - \rightarrow estimate difference in transition probabilities, eg. P(A>B) > P(A<B): "family biases"
- 2. We can estimate family biases even for isolates and small families via extrapolation (Bickel 2013§)

Set-based approach:

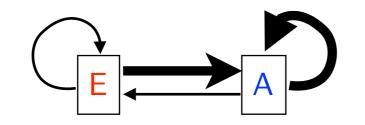


 Infer a family bias if A "dominates", using e.g. a binomial test. (If nothing dominates, we don't know.)

Tree-based approach:



- Estimate the best-fitting transition rate matrix Q in a Continous-Time Markov chain
- Infer a family bias if
 *q*AE≠*q*EA fits the data better
 than *q*AE=*q*EA (LR or BF)



Assumptions

	set-based	tree-based
family model	tree, wave, linkage, network	tree (strict)
stochastic process of diachronic event	independent multinomial trial	Continuous-Time Markov or Wiener process
data requirement	none	non-constant
family requirement	none	topology; branch lengths*

*e.g. length 1 between each node, assuming that anagenetic change in, say, the lexicon, is irrelevant for type change, especially if caused by contact (Thomason & Kaufman 1988)

Step 2: estimate bias probabilities behind small families and isolates

 Use the mean probability of bias in large families for estimating the probability that a small family is what survives of a large family with a bias (in whatever direction). E.g. Laplace estimates on biases with 95%CI:

Africa	Eurasia	Pacific	N/C America	S America
.92 (.75,1)	.75 (.48, .94)	.5 (.27,.73)	.88 (.59,1)	.5 (.15,.85)

 if estimated to be biased, estimate direction of bias value (e.g. E) based on what they have, allowing for deviations with a probability based on deviations in large families, and resolving ties at random, e.g.

	Africa	Eurasia	Pacific	N/C America	S America
AUTOTYP	.0	.027	.034	.0002	0.01

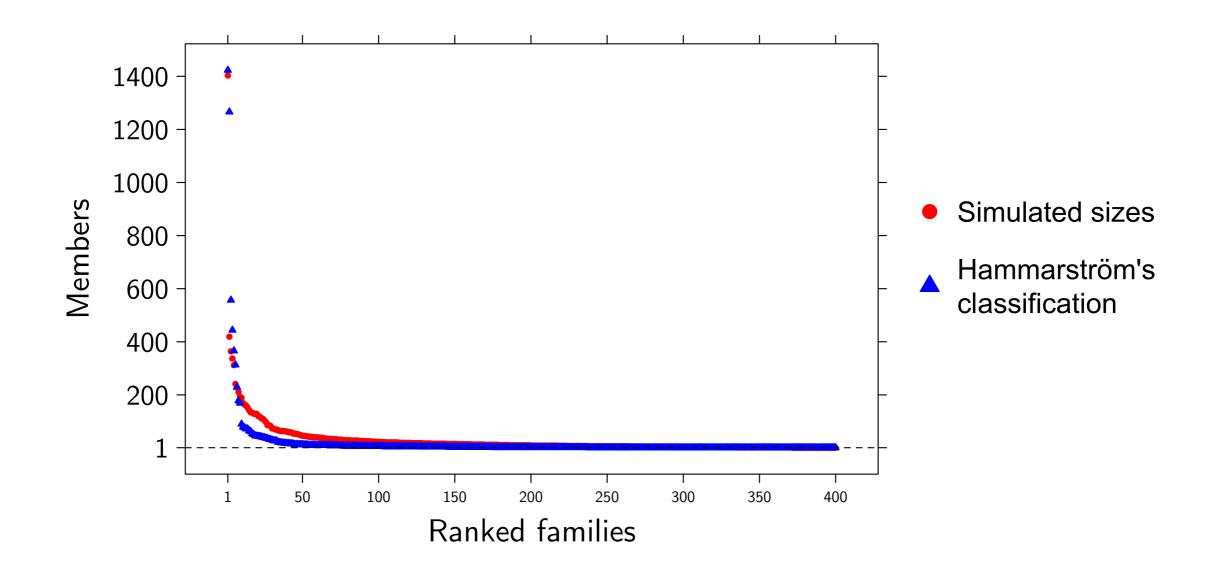
• take the mean across many extrapolations (e.g. 10,000)

22

Performance of methods in simulations (preliminary!)

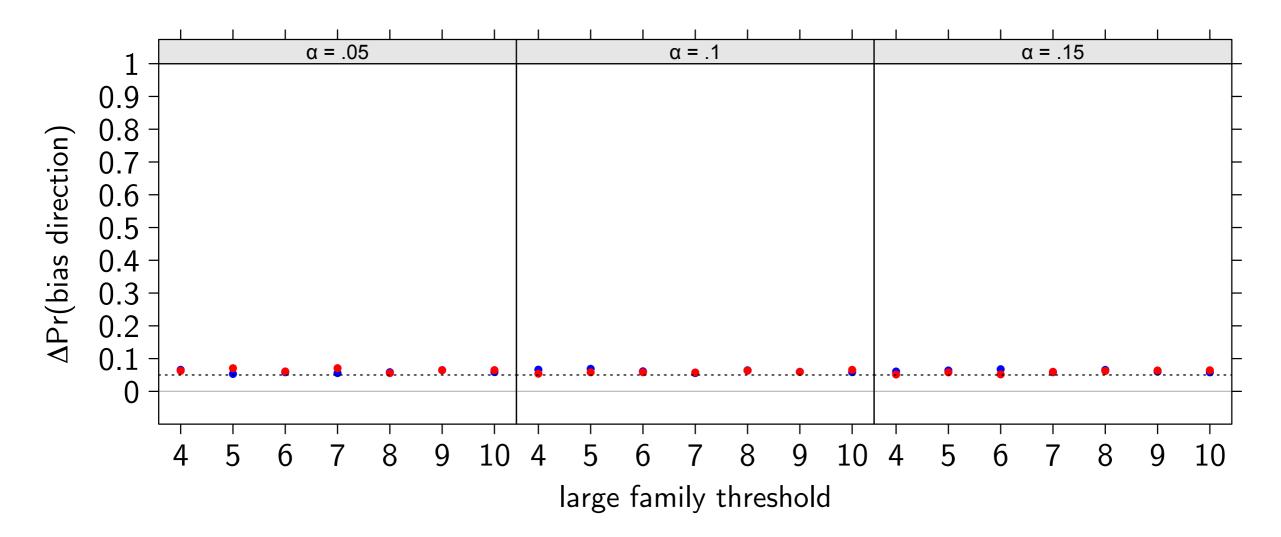
Simulation of a discrete-time Markov process, where language varieties can (within steps of ca. 100 years \sim 3 generations)

- give birth: Poisson process with birth rate $\lambda = [.7, .8]$
- die or stay alive: Bernoulli process with survival prob. $\pi = [.1, .2]$



Performance of methods in simulations (preliminary!)

- add a binomial variable with a family bias
- and see what we can recover, varying the definition of 'small family' and the rejection level of binomial test for inferring a bias in a family:

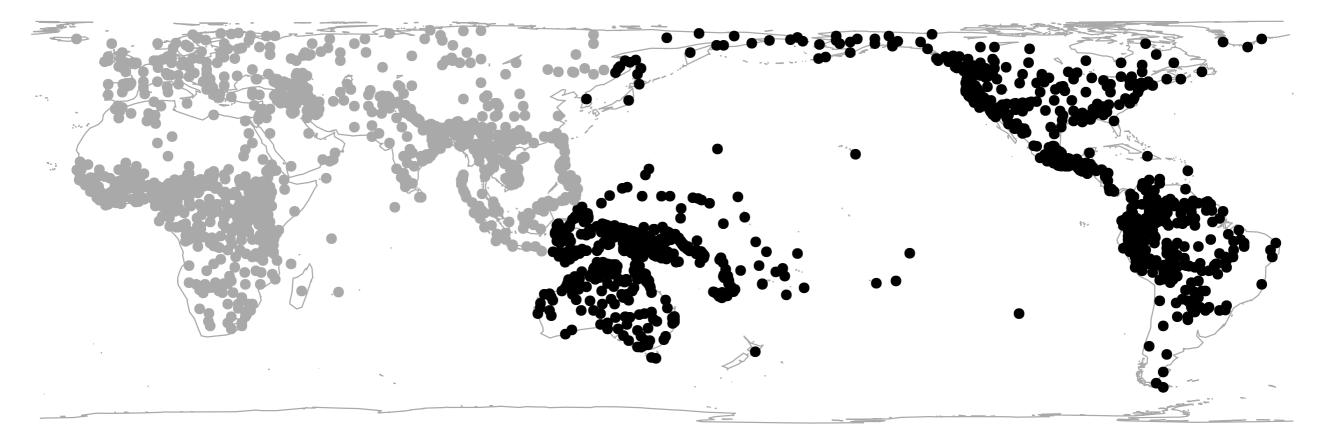


Mean Pr(bias direction) estimated lower than built in

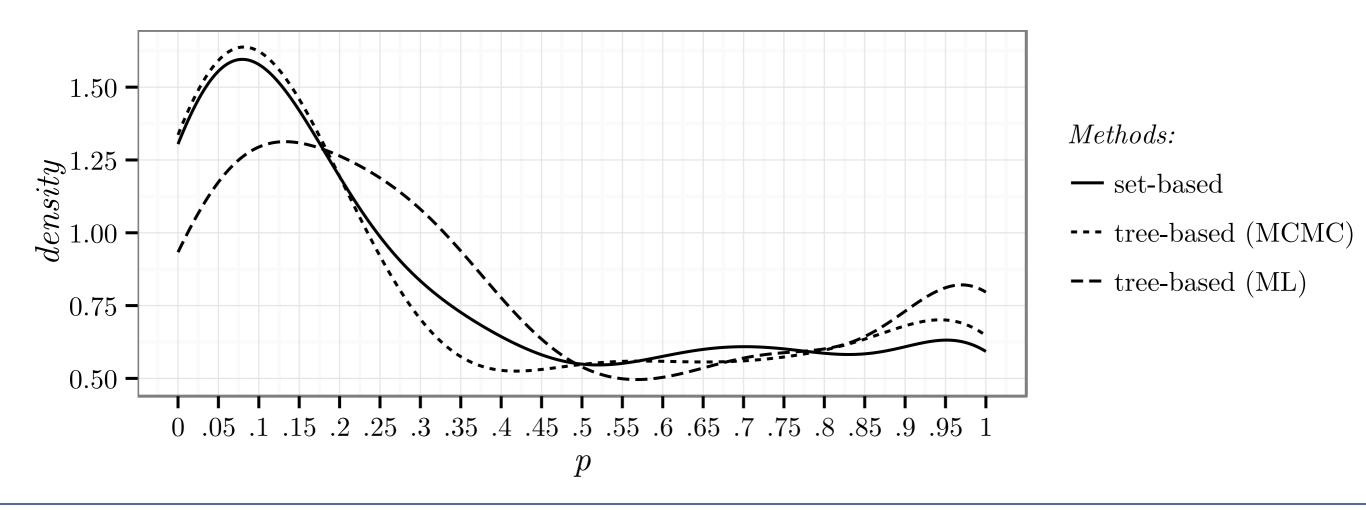
Mean Pr(bias direction) estimated higher than built in

So, we have framework and a method → apply in two case studies focusing on methods

- Causal theory grounded in the peopling of the Pacific and the Americas vs. the younger spreads in Eurasia 20-1kya and Africa in the past 2ky: contact triggers change towards similar properties
- **Hypothesis:** families show different diachronic biases in the Trans-Pacific area vs. elsewhere, keeping many diverse properties that were swept away through contact elsewhere



- Data from AUTOTYP and (re-coded) WALS, $N \ge 250$, k < 10
- 354 multinomial variables coded for N=[250, 1370] languages
- Set-based family bias estimates of large ($N \ge 5$) families with, a=.1
- Tree-based family bias estimates of non-constant large families, *BF*>2
- Extrapolations, then Fisher Exact Test of MEAN BIASES IN VARIABLE \times AREA



Bickel in press in Language Dispersal, Diversification, and Contact, ed. Crevels, Hombert & Muysken, OUP

 False Discovery Rate (q) estimates (using Dabney & Storey's 2014 bootstrap method):

	Significant at $\alpha < .05$	q at that level	Significant at $q < .1$
Set-based	73	0.16	32
Tree-based (MCMC)	71	0.15	26
Tree-based (ML)	43	0.27	17

- From this, subtract variants of variables, e.g re voicing distinctions in WALS:
 - MADVOI: {none, in_plos_&_fric, in_plos_only, in_fric_only}
 - MADVOI2: {none, some}
 - \rightarrow 30 true discoveries (mean, set-based and MCMC-based estimates)

• Top 15:

Variable	Source	N(lgs)	p (sets)	p (MCMC)	p (ML)	Trans-Pacific	Other	Variant of
MADVOI2	WALS	565	0.0000	0.0000	0.0001	-voicing	+voicing	
DRYPOS	WALS	794	0.0000	0.0007	0.0069	+ poss pref	-poss pref; +poss suff	
MADVOI	WALS	565	0.0000	0.0018	0.0079	-voicing in plos/fric	+voicing in plos/fric	MADVOI2
DRYPOS0	WALS	591	0.0000	0.0003	0.0000	+poss pref;-poss suff	-poss pref; +poss suff; -both	DRYPOS0
MADLAT2	WALS	565	0.0001	0.0002	0.0002	-laterals	+laterals	
BAKADP2	WALS	377	0.0002	0.0002	0.0009	-adp	+adp	
DRYGEN	WALS	1102	0.0002	0.0024	0.0009	-NGen	+NGen	
MADLAT	WALS	565	0.0002	0.0031	0.0046	–non-obstr lat	+non-obstr lat	MADLAT2
DRYGEN0	WALS	1020	0.0002	0.0002	0.0001	-Nnp	-npN; +Nnp	DRYGEN
POLYAGR	AUTOTYP	331	0.0004	0.0001	0.0018	-without;+POLYAGR	+without; -POLYAGR	
DRYDEM0	WALS	1011	0.0004	0.0004	0.0017	+DemN;-NDem	-DemN; +NDem	
MADPRS	WALS	565	0.0006	0.0000	0.0019		+Labial-velars	
LOCUS.POSS	AUTOTYP	270	0.0008	0.0376	0.3543		-H	
MADTON02	WALS	525	0.0008	0.0009	0.0029	+atonal;-tonal	-atonal; +tonal	
HASWAN03	WALS	269	0.0011	0.0011	0.0055	+desid aff	+implicit subj; –desid aff	
LOCUS.POSS.S	AUTOTYP	276	0.0013	0.0025	0.3346		-H	LOCUS.POSS

- Pearson Residual Analysis:
 - 83% positive for outside Trans-Pacific (mean across methods)
 - 28% positive inside Trans-Pacific (mean across methods)

• Primacy of A arguments in processing:

dass Peter Lehrerinnen that Peter: X/A/P? teachers: A/P? **mögen** [NP1 was A!] **ike**

- The comprehension system tends to first assume that an unmarked initial NP is S or A, but not P
- If this NP later turns out to be P, this triggers an N400 (+ LPS):

 \rightarrow ERP effect ("Anti-Ergative Effect")

PΖ

1 s

LPS

30

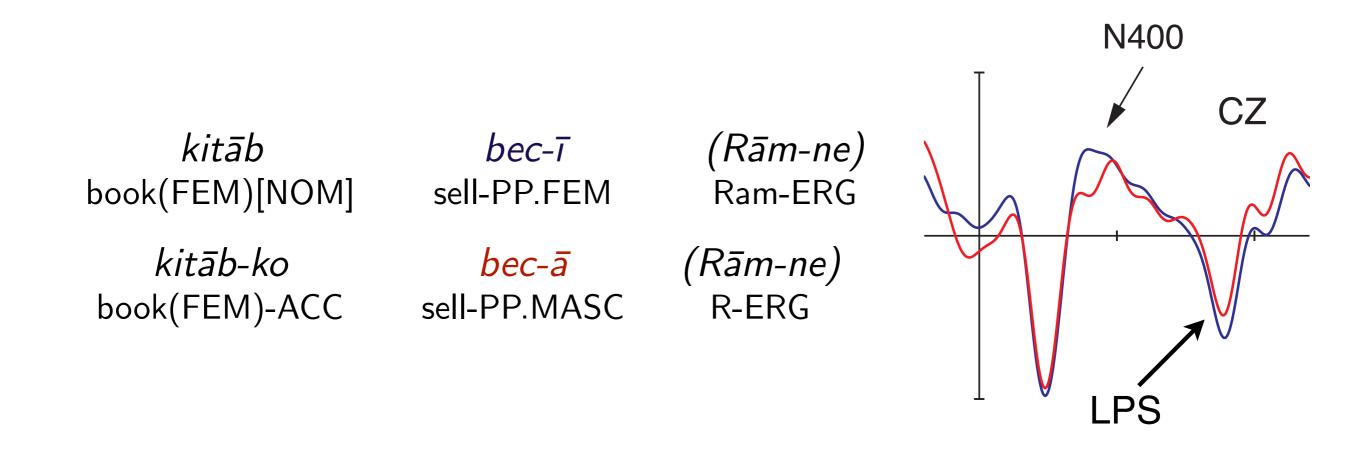
N400

The Anti-Ergative Effect is independent of:

- *Frequency:* because of frequent A drop, initial NPs in Turkish tend to be P arguments, but the effect is still there (Demiral et al. 2008^{*})
- Animacy: initial NPs in Turkish tend to be inanimate, but the effect is still there (Demiral et al. 2008^{*})
- *Topicality:* initial NPs in Chinese show the effect regardless of whether the context makes them topical or not (Wang et al. 2010⁺)
- The role played by {S,A} vs {P} alignment in grammar: very restricted relevance in Chinese but the effect is there nevertheless (Wang et al. 2009#)

Case Study #2: The Anti-Ergative Hypothesis

And it even shows up in languages with ergative case, such as Hindi:



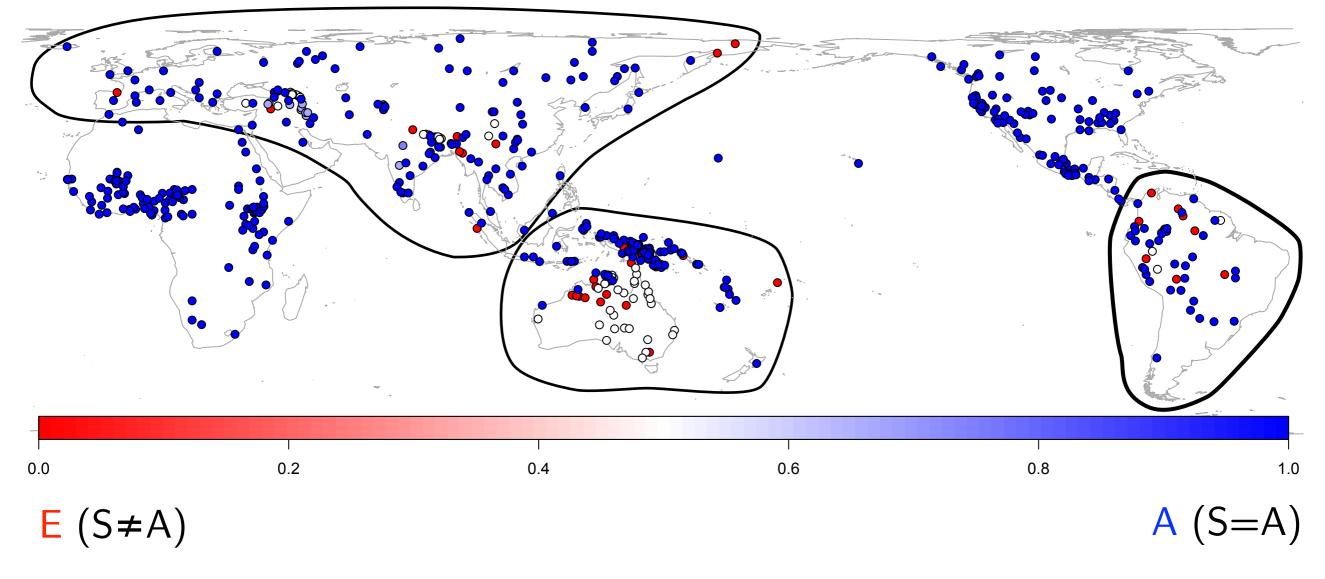
Although Hindi NOM structurally includes and often prefers a P-reading, the processing system first interprets it as S or A!

Hypothesis:

- If the Anti-Ergative Effect indeed applies universally to every unmarked initial NP, and if systems adapt to their processing environment, expect them
 - to attempt to reanalyze initial NPs as covering {S,A}
 - ▶ to avoid reanalyzing initial NPs as covering {S,P}

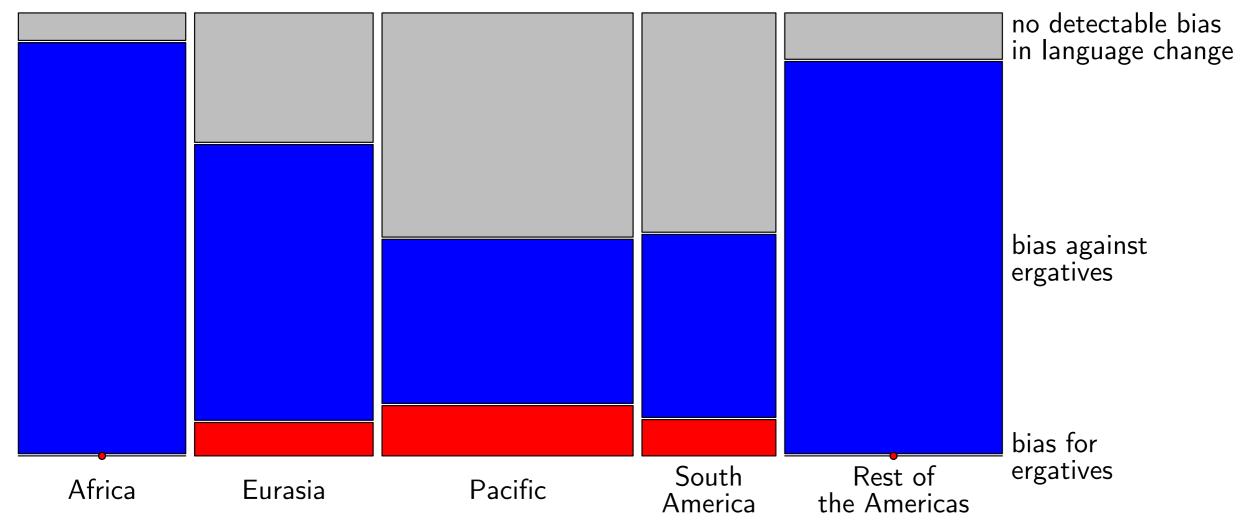
Case Study #2: The Anti-Ergative Hypothesis

- Tested on 617 languages, 712 subsystems (e.g. past vs. nonpast); excluding V-initial structures
- Controlling for possible event-based areal diffusion effects



(means per language, across all NP types, clause types, and valency classes)

Case Study #2: The Anti-Ergative Hypothesis



Bias for ergatives vs. against ergatives is determined both by:

- contact histories (AREA \times BIAS DIRECTION, LR p<.01)
- Anti-Ergative Effect: more ergative biases than anti-ergative biases across all areas (binomial ps<.05)

Results are the same across methods and genealogical data (set-based vs treebased estimates, AUTOTYP vs. GLOTTOLOG trees etc.)

Bickel, Witzlack-Makarevich, Choudhary, Schlesewsky & Bornkessel-Schlesewsky, to appear in PLOS ONE

Conclusions

- Causal theories are tricky in traditional, Pāņinian linguistics
- Alternative: theories of historical contact events and functional constraints \rightarrow causes for biases in language change
- Now testable (though we obviously still need better methods, e.g. sensitive to partial tree or network structures in families)
- Describe language so we can test theories: descriptions need to become even more typologically informed than in the past